演講者:弗蘭克?維爾澤克(Frank Wilczek),理論物理學(xué)家,麻省理工學(xué)院物理學(xué)講席教授,諾貝爾物理學(xué)獎獲得者。
大家好,很高興來到這里,繼續(xù)我在中國做公開演講的傳統(tǒng)??吹娇茖W(xué)在中國的被關(guān)注程度,以及中國科研的活力,不斷提升的科研質(zhì)量,很令人鼓舞。
今天的主題不僅是目前物理學(xué)前沿的大問題,也是哲學(xué)前沿的大問題:理解意識是如何從物質(zhì)中產(chǎn)生的。
大多數(shù)科學(xué)家,如研究人類大腦的神經(jīng)生物學(xué)家,都假設(shè)意識確實是從物質(zhì)中產(chǎn)生的。因此,全面理解了大腦也將使我們明白人類是如何思考的。但是,在物理學(xué)中,我們也逐漸明白,信息應(yīng)該被視為是物理的( information is physical)。貫穿這次講座,我將對這一想法詳細論述,并且它可以以幾種完全不同的方式體現(xiàn)出來。信息和思想不僅可以在大腦物質(zhì)中實現(xiàn),也可以在其他種類的物質(zhì),甚至與人類大腦不太相似的物質(zhì)中實現(xiàn)。所有這些都表明,意識可以從物質(zhì)中涌現(xiàn),而且是以幾種截然不同的形式。這就是為什么我今天的標(biāo)題是“奇特新腦(Strange New Minds)”。
我將要討論的第一種奇特新腦是大家可能都熟悉的東西。這是下面我將談?wù)摰募夹g(shù)中最為成熟的一個,但是它帶來了這樣一種觀點,即意識能夠以一種現(xiàn)在人們非常熟悉的、切實的形式,從物質(zhì)中涌現(xiàn)出來。數(shù)字計算機,我們知道它們所做的一切 —— 在許多方面類似于智能實體的行為,都是基于對大量 0 和 1 的操作。我們確切地知道這些奇特新腦是如何工作的,因為是我們建立了它們。
喬治?布爾(George Boole)
信息可以通過符號來表示,一般意義上的信息都能夠以 0 和 1 來表示。這一理解可以追溯至喬治?布爾(George Boole),他是 19 世紀(jì)英國的一位數(shù)學(xué)家和哲學(xué)家。他寫了一本著名的書,題目是“思維的法則”(Laws of Thought)。在哲學(xué)家萊布尼茨甚至亞里士多德那里,你能發(fā)現(xiàn)更早的類似想法,但是把它引入科學(xué)層次的確實是布爾。布爾的核心想法可以簡單地這樣表述:思維中的一個過程、理性的一個過程,是邏輯演繹。布爾認為,我們可以用“1”來表示一個陳述為“真”(正確),用“0”來表示一個陳述為“假”(錯誤),然后就可以依據(jù)系統(tǒng)的法則,對這些“0”和“1”進行操作,得到新的推論、新的陳述。
例如,如果陳述 A 是真的,那么以“1”來表示,陳述 B 也是真的,也以“1”表示,那么,陳述“A 且 B”也是真的,所以也應(yīng)該以“1”表示。陳述“A 或 B”也是真的,因此同樣以“1”表示。陳述“非 A”是假的,因此以“0”表示。聯(lián)合“0”和“1”來進行邏輯演繹的規(guī)則,叫作“布爾代數(shù)”。
布爾代數(shù)
受此啟發(fā),也受工業(yè)對實用計算技術(shù)需求的刺激,查爾斯?巴貝奇(Charles Babbage)設(shè)計了一個更通用的機器,他稱之為“分析機”(Analytical Engine)。阿達?洛芙萊斯(Ada Lovelace)與他合作密切。在某種程度上,阿達?洛芙萊斯是第一位計算機程序員,她看到了這一機器的各種可能性,并將其解釋給世界。
查爾斯?巴貝奇
阿達?洛芙萊斯
這是“分析機”的模型,它將“信息是物理的”這一想法,從概念階段、從喬治?布爾意思到的符號表示階段,發(fā)展到機械操作階段。這臺機器不同部件的設(shè)置,幾乎沒有來回切換的開關(guān)。這臺機器通過機械操作來執(zhí)行邏輯法則,或者你可以說,來實現(xiàn)思考。
分析機
艾倫?圖靈(Alan Turing)繼承了洛夫萊斯和巴貝奇在這個特殊的機器(按照今天的標(biāo)準(zhǔn),這個機器又小又難用)中發(fā)展出的想法,并使它更加抽象了。圖靈試圖“捕獲”所有的思想形式,不僅僅是數(shù)學(xué)計算或邏輯推理。在運算方面人們可以想到的一切,都可以用“0”和“1”來凝練地實現(xiàn)。例如,你可以用“0”和“1”來編碼一幅圖像:用一個二進制數(shù)來描述光的強度,這個二進制數(shù)有很多 0 和 1;然后,操縱“0”和“1”可以生成不同顏色和光強的新圖像?;蛘吣阋部梢蕴幚砦谋?,以及實現(xiàn)很多超越布爾和洛夫萊斯所設(shè)想的邏輯和數(shù)學(xué)計算的事情。
艾倫?圖靈
這里需要強調(diào)的一點是,盡管圖靈的架構(gòu)只是“符號式”的,他是一個理論家,但這個架構(gòu)非常清晰。這臺被稱作“圖靈機”的思想機器的每一步操作都非常清楚。因此,如果你想建造一臺能“思考”的機器,你可以把它當(dāng)作說明書來讀。
圖靈機:一種通用計算機
非常重要的是,圖靈提出了令人信服的論據(jù)。其他人也從不同的角度探究這一問題,雖然他們提出的執(zhí)行“思考”的方案很不同,但所有這些方案都被證明可以用圖靈機來實現(xiàn)。因此,人們普遍接受了:任何能完成圖靈提出的操作的機器,只要其足夠快、規(guī)模足夠大,就能做任何大腦能做的事情。這被稱為通用計算機。
存在一種通用的具有思考能力的機器,這是一個非常、非常強大的概念。但是我想強調(diào)一個非常重要的物理問題,也是一個非常重要的哲學(xué)問題,也許喜歡挑戰(zhàn)權(quán)威和質(zhì)疑公認智慧的年輕人可能會提出這種問題,即:任何可以計算的東西,任何可以思考的東西,任何可以在物理世界中實現(xiàn)的東西,真的都可以用圖靈機來計算嗎?
這是一個深刻的物理問題。我們不知道確切答案。
克勞德?香農(nóng)
克勞德?香農(nóng)(Claude Shannon)是麻省理工學(xué)院的教授,他把故事推動到下一階段。
當(dāng)香農(nóng)進行設(shè)計來實現(xiàn)布爾和圖靈曾想實現(xiàn)的想法時,不是以機械齒輪和曲柄,或者純粹的符號來實現(xiàn),而是用更現(xiàn)代化的電子電路技術(shù),我們稱之為“邏輯門”。它們是邏輯運算的實現(xiàn),我在講到布爾時告訴過你們,但是現(xiàn)在它是以電路的輸入和輸出來實現(xiàn)的。
在一個非常常見的實驗中,“真”以高電壓表示,“假”以低電壓表示。你在“(邏輯)門”的一端輸入(高 / 低)兩電壓,經(jīng)由一個合理設(shè)計的電路,通往另一端,在那里輸出對輸入進行布爾代數(shù)運算后的結(jié)果。如果你想表示邏輯“和”,也就是要實現(xiàn):當(dāng)且僅當(dāng)兩個輸入都是高電壓時,你的輸出是高電壓。這成為了設(shè)計電路來物理上實現(xiàn)布爾代數(shù)的一個問題。實際的電路相當(dāng)復(fù)雜,如果你學(xué)習(xí)電子工程、計算機科學(xué)課程,你就會學(xué)習(xí)如何設(shè)計這些電路。
邏輯門
香農(nóng)的博士論文就是基于能夠?qū)嶋H制作出執(zhí)行這些操作的電路設(shè)計??催@個例子,這是一個表示“否”的邏輯電路。如果你在左面的輸入端輸入一個高電壓,那么低電壓從右邊的輸出端輸出,而如果你在輸入端輸入一個低電壓,那么高電壓則會從輸出端輸出。
電子邏輯門“否”
在早期,我指的是 20 世紀(jì) 40 年代開始的時期,實際上,這些想法是出于戰(zhàn)爭的需求而第一次被整合實現(xiàn)。在晶體管帶來變革之前,計算機基于真空電子管。在我小時候,我父親是一名電子技師,處理早期的收音機和電視,家里到處是這種真空管,就這樣我慢慢開始了解和喜歡上它們。
真空管
但是,正如你所看到的,按照現(xiàn)代標(biāo)準(zhǔn),真空管的體積太大了。與現(xiàn)代計算機芯片相比,真空管要大得多,而且這只代表一個邏輯門的一個元件。同樣,它們并不穩(wěn)定,發(fā)熱現(xiàn)象很嚴(yán)重。但第一臺電子計算機就是基于真空管發(fā)明的。
現(xiàn)代計算機時代真正開始于晶體管和集成電路的發(fā)現(xiàn),利用它們你可以在一個小地方放置很多很多邏輯門。到了 20 世紀(jì) 70 年代,IBM 生產(chǎn)出著名的 360 系統(tǒng),雖然體積仍然很大,但卻是基于晶體管、更復(fù)雜的電子學(xué),磁帶用作存儲器。稍后,我會更詳細些說明。多年來,這是一項占主導(dǎo)地位且非常實用的技術(shù)。
早期的集成電路和存儲器
如今,曾經(jīng)一房間儀器才可以實現(xiàn)的功能可以在一個芯片上實現(xiàn)。這個芯片可能只有拇指這么大。英特爾處理器就這么一點點。可以看到,由于物理學(xué)和工程學(xué)的進步,現(xiàn)在可以在一個很小的物體里實現(xiàn)很多很多的邏輯門,就是它們?yōu)槟愕奶O果手機、筆記本電腦提供動力,從而讓這些現(xiàn)代計算設(shè)備和許多工業(yè)應(yīng)用在日常生活中變得如此簡單。
現(xiàn)代處理器
這么了不起的裝置,值得我們進一步去了解一下它。這里提供幾個數(shù)據(jù),這些是芯片的規(guī)格。首先是時鐘頻率。要進行邏輯運算,你必須完成一步,再做下一步,然后再做下一步。這是時間的函數(shù),計算會隨時間向前推進。時鐘頻率是每秒 30 億次運算,記作 3 GHz。信息移動的速度類似于每秒十億次信息從一個地方傳輸?shù)搅硪粋€地方。我可能沒法向大家精確地說明這一定義,需要知道的是,這些思維機器非常敏捷。人腦的時鐘頻率大約是每秒 1000 次,要慢 100 萬倍。而一臺電腦的價格只有 999 美元,比雇一個學(xué)生或助手來做計算,成本要低得多。
芯片的規(guī)格
但是有兩件事限制了這項技術(shù)繼續(xù)發(fā)展。一是它產(chǎn)生大量熱量。一個小小的芯片能產(chǎn)生高達 130 瓦的功率,這取決于你使用它的程度。而人腦可產(chǎn)生大約 30 瓦的功率,盡管它比人腦小得多,但它產(chǎn)生的能量和熱量卻比人腦多。計算機技術(shù)前沿的一個巨大挑戰(zhàn)是散熱。
芯片單元也變得越來越小。45 納米這一規(guī)格,可能對你來說太抽象了,它只有原子大小的幾倍 —— 大約是單個原子的十倍。所以,芯片運作背后的這些小邏輯門并不比單個原子大多少。芯片驚人的能力依賴于這些奇特的新“腦”,依賴于對物質(zhì)如何工作的強大理解。所以說,物理很偉大。
要走得更遠,我們需要更深入地了解物質(zhì)是如何工作的。因為越小意味著越快、越便宜。我們制造越來越小芯片的技術(shù)推動了技術(shù)進步。這在哲學(xué)上非常有趣。你制造機器,制造出的機器再制造更小的機器。
但事實遠比此更為復(fù)雜。同樣,它需要許多基礎(chǔ)物理創(chuàng)新和深刻理解。這就是萬物的本質(zhì),沿著這條路,多年來進展顯著,至少有 50 年的發(fā)展史了。
摩爾定律正發(fā)揮著作用。摩爾定律并不是一個定律,它不是自然定律,而是對數(shù)字計算機技術(shù)發(fā)展趨勢的觀察。這一定律概述:大約每兩年,芯片的線性尺寸將變小一倍,價格便宜一倍,速度快一倍。這一業(yè)態(tài)已持續(xù)了幾十年。
現(xiàn)在,翻一倍也許不像以前那樣了。由于基本的物理原因,這種進展速度將很難保持?,F(xiàn)在的比特幾乎總是涉及:分離電荷以獲得電壓,正如我之前提到的,或者排列物體(通常是電子)的自旋。因此,如果你想編碼“1”和“0”(這通常利用電壓來實現(xiàn)),你要做的是這樣分離電荷:如果高壓開啟,即正電荷在上而負電荷在下,你會得到“1”;相反,你會得到“0”。這是在物理上實現(xiàn)“1”和“0”的一種方法?;蛘?,你可以利用自旋方向:自旋全部向上、向下分別代表“1”和“0”。
如今,尺寸越來越小,小到只有幾個原子大小,因此,在“0”和“1”的基本實現(xiàn)上,我們可以利用的僅有幾個單元。如果我們想繼續(xù)改進技術(shù),那將要改變摩爾定律,以及改變我們工作的本質(zhì),這是非常具有挑戰(zhàn)性的,因為當(dāng)我們進入只有一到幾個自旋或電荷的層次,規(guī)則變化了。我們進入所謂的量子力學(xué)領(lǐng)域,面對的是物理學(xué)中的量子行為。
量子世界是一個很難開展工作的地方,在那里你只有一個電荷或一個自旋。數(shù)量上發(fā)生很小的漲落,就會導(dǎo)致完全不同的結(jié)果。而在量子世界中,漲落無處不在。
量子力學(xué)的本質(zhì)在于概率,而且量子世界充滿了漲落。例如,電子不能同時具有確定的位置和確定的速度,這就是海森堡不確定性原理。所以,當(dāng)你的單元在到處移動并且很難確定的時候,這是一個很難開展工作的地方。
但正如我將要闡述的,這個奇怪的量子世界也充滿了希望和允諾。如果我們與之合作,而不是試圖與之對抗,它會開辟新的可能性。
我們正在從比特、二進制數(shù)字,即 1 和 0,轉(zhuǎn)向量子力學(xué)版本的比特,稱之為量子比特。這帶來了一種新的信息,不是布爾、巴貝奇和圖靈等認為的固定量的 0 和 1,而是物理世界啟發(fā)的、來自物理世界的 —— 漲落的量。
經(jīng)典比特和量子比特
最簡單的兩態(tài)系統(tǒng)即一個單自旋,就是一個量子比特,它和我已經(jīng)提到的經(jīng)典世界的指上或指下的東西具有非常不同的圖像。它具有量子不確定性。由于我們無法擺脫量子不確定性,我們必須學(xué)會接受它。
就這種不確定性的特別形式,我詳細解釋一下?,F(xiàn)在我們測量一個量子比特的自旋 —— 讓我們把量子比特看作是指向上或下的自旋。我們可以在任意方向測量這個量子比特的自旋 ——x 方向、y 方向或 z 方向。如果我們這樣測量,我們沒有得到一個確定性的結(jié)果,正如我所說的,量子世界具有漲落。在量子力學(xué)原理中,你要知道,你能做到的是:得到在測量的三個方向上自旋向上或自旋向下的概率。
相比于單個經(jīng)典比特的只有一種選擇 —— 要么是 1,要么是 0,對于量子比特,我們需要三個概率 —— 三個數(shù)字,三個連續(xù)的數(shù)字即所謂的實數(shù),來定義一個量子比特在做什么,它是什么狀態(tài),而不是只有一個選擇,要么是 0,要么是 1。量子世界存在的現(xiàn)象,必須用復(fù)雜得多的方式對其描述。
我們試著形象化一些東西,它們是抽象的,但也都出自物理的具體研究。比特的值要么是 0,要么是 1,
而量子比特在漲落,一個量子比特的狀態(tài)需要用三個數(shù)來表征,這就如同你在描述三維圓球中的位置時所需要做的一樣。這已是狀態(tài)空間的一個大擴展。
當(dāng)我們開始考慮量子比特對時,事情變得更瘋狂了。如果我們要描述它們的狀態(tài),我們可以選擇在 x 方向測量兩個量子比特,或者我們可以選擇在 x 方向測量量子比特 A、在 y 方向測量量子比特 B,或者反過來,等等。共有九種可能性,每一種又都有其概率。然后我們也可以置一個量子比特于不顧,只測量另一個量子比特。這就引入了另六種可能性?;诹孔恿W(xué)原理,可以證明,每一個可能性都以一個獨立的數(shù)字來描述。所以兩個量子比特用 15 個數(shù)字描述 ——15 個實數(shù)。以此類推,為了描述量子比特的狀態(tài),我們需要 2 的 2N 次方 - 1 個實數(shù)。
在場的很多人應(yīng)該知道如何解釋這個數(shù)字 2 的 2N 次方 -1 有多大。一個量子比特,我們需要 3 個數(shù)字,兩個量子比特,我們需要 15 個數(shù)字,三個量子比特,我們需要 63 個數(shù)字,四個量子比特,我們需要 127 個數(shù)字,等等。數(shù)字變得非常大,變得非??臁J聦嵣?,前幾個例子還看不出來它會變得多么巨大。
有一個故事可以生動地比喻這個變化。這是一個關(guān)于國際象棋的故事,國際象棋起源于波斯、印度、中國或是其他地方,這不是故事的重點。國王對象棋非常滿意,他非常喜歡這個游戲,于是想獎勵發(fā)明者。國家就問這個發(fā)明者:“告訴我,你最想要什么?!毕笃宓陌l(fā)明者說:“我很謙卑,并不需要豐厚的報酬,只想每天都有米飯吃。而且我想將您的獎賞與象棋結(jié)合起來。所以請您第一天賞我一粒米,放在第一個正方形里,第二天,賞我第一天的米數(shù)的 2 倍,放在第二個正方形里,第三天的數(shù)量是第二天的 2 倍……”國王說:“這太荒謬了,也太少了吧,與你的成就不符呀。”但是象棋的發(fā)明者堅持就要這樣的獎賞。于是國王便同意了。起初,這看起來像個玩笑。一開始是一粒米,然后兩粒,然后四粒,八粒,然后十六粒。但是后來數(shù)量開始變得更多了。很快國王發(fā)現(xiàn)他的大米儲備已經(jīng)耗盡,他很尷尬,因為他要失信了。所以,他殺了象棋的發(fā)明者。
從中我們可以學(xué)到,不斷翻倍,會產(chǎn)生非??斓脑鲩L。這就是所謂的指數(shù)增長,這就是為什么摩爾定律能使我們從巴貝奇使用的那種笨重的機器中快速實現(xiàn)了計算機的現(xiàn)代化。這也同樣適用于量子計算機和傳統(tǒng)計算機的對比。當(dāng)你添加越來越多的量子比特,量子計算機的容量增長會非常非常地快,比傳統(tǒng)計算機的比特數(shù)增長函數(shù)要快得多。因此量子比特的潛力非常大,它能開辟更為廣闊的空間。
但是,它們很精微、脆弱。在最初的實現(xiàn)過程中,我向你們提到,是單個電子或單個自旋。它們很容易被擾亂。這些概率很容易被任何與外界的相互作用干擾。如果你用這些概率來編碼你的信息,它們是非常脆弱的。所以我們需要保護這些量子比特不受外界以及彼此的影響,以保持信息的完整性。但另一方面,為了讓他們做有用的工作,他們必須相互影響,以實施量子門或其他操作。最終,我們不想僅僅把我們的量子計算機當(dāng)成一個黑箱來欣賞,開心于知道它的快和強大,我們想利用它解決問題!所以我們希望它能夠輸入和輸出信息。因此,我們必須在量子比特的孤立和相互作用之間保持微妙的平衡,前者是量子比特完整性的必要條件,后者是量子比特執(zhí)行必要事情的必要條件,也是量子比特偶爾與外界作用以獲取、輸出信息的必要條件。
物理學(xué)家和工程師正在探索幾種不同的方法來制造實用的量子比特。這對物理學(xué)家和工程師來說是一個巨大的挑戰(zhàn),基本性的新思想已經(jīng)出現(xiàn)。我認為,為了發(fā)揮出量子計算的潛力,還需要更多的新思想。在此,我將簡要提及已經(jīng)在進行的或正在追尋的三個主要方向。
一個是原子,用激光方法來實現(xiàn);另一個是電路,以電子學(xué)方式來實現(xiàn);還一個是任意子,用編織來進行計算。正如數(shù)字計算機從齒輪到真空管再到越來越小的晶體管,從磁帶式驅(qū)動器到拇指般大小的驅(qū)動器一樣,這項技術(shù)肯定也會不斷發(fā)展。我們現(xiàn)在正處在一個非常早期的狀態(tài),可以說甚至還沒到量子計算的“真空管”階段,而是“分析機”時代。所以,我要說的是,還有其他的替代方法,雖然目前還不太發(fā)達,但也有可能會非常強大,如利用光而非原子,或利用固體缺陷。
這里為大家介紹一個粗略的,一個非常粗略的簡單想法,一項正在研究的方法:里德伯原子方法。在這種方法中,你的量子比特或原子,被困在場中,場使得原子位置不動。你從而獲得一個原子陣列,你知道它們的位置,所以可以定位它們。然后你用激光來進行激發(fā)。通常情況下,如果你什么都不做,它們的相互作用非常非常弱,它們是孤立的量子比特。如果你想讓它們相互作用,你所做的就是用激光激發(fā)它們,然后原子會變得非常大,被稱作“里德伯原子”。如果你把其中的兩個變大,它們可以互相接觸,互相影響。如果你做得恰到好處,你就可以執(zhí)行布爾和圖靈所述的那些操作。然后,通過發(fā)射輻射讓它們冷卻下來,恢復(fù)原樣,然后繼續(xù)重復(fù)這一操作。這是一種方法。
它有一定的局限性,因為你需要讓原子保持距離。你需要用激光來定位。你還需要非常小心地讓它們實現(xiàn)相互作用。這就是為什么我說我們處于發(fā)展的極早期。但是如果運氣好的話,事情會越來越好的。會有一個新的摩爾定律,量子摩爾定律將開始呈指數(shù)增長。
Lukin 和他的 51 量子比特的量子模擬機
這是我的朋友 Misha Lukin,他制造了一臺 51 量子比特的計算機。它不是通用計算機,所以我們稱它為模擬器,基本上由里德伯原子排列構(gòu)成。我選擇這張照片是為了呈現(xiàn)現(xiàn)實的前沿實驗所涉及的規(guī)模,還因為米沙是我的朋友,這是一張不錯的照片。我是在網(wǎng)上找到的。
電路更為復(fù)雜,很難描述。即便是最簡單的可能的邏輯門,電路也十分復(fù)雜!但是物理學(xué)家和工程師在設(shè)計復(fù)雜電路方面已變得非常、非常熟練,經(jīng)驗豐富。所以這是另一種被探索的方法,用來制造量子計算機。
這些量子比特能夠代替比特的原因是電路非常小,并且以巧妙的方式涉及超導(dǎo)性,允許你有效地實現(xiàn)單獨的量子比特 0 和 1。這就是這個設(shè)計的物理實現(xiàn)。這是谷歌量子計算機,目前,已有 53 個量子比特 [注:演講時間為 2019 年 11 月]。這里溫度很低。你看到的大部分是制冷器,實際的計算機就埋在這里的某個地方,非常小。利用這種設(shè)備,谷歌最近宣布其已實現(xiàn)了量子霸權(quán)。也就是說,這種設(shè)備在相當(dāng)短的時間內(nèi),幾分鐘內(nèi)就能完成一些事情,而經(jīng)典計算機,甚至是當(dāng)今最強大的經(jīng)典計算機,體積有一個房間大,都需要花費非常非常長的時間來完成。關(guān)于到底要多長時間還有爭議,但明顯要久得多。他們制作了一個量子系統(tǒng),難以對其進行經(jīng)典模擬。
但是,你應(yīng)該非常謹(jǐn)慎,非常仔細地理解這個詞,量子霸權(quán)。某種程度上,它像是在暗示量子將是至高無上的,經(jīng)典計算機將很快過時。根本不是這樣的。事實上,量子霸權(quán)的整個概念是一個有趣的概念,因為我知道如何使用一個具有量子霸權(quán)的原子來設(shè)計量子計算機,并實際解決一個有用的問題,而不像谷歌,它是非常人工的。比如,這是一個碳原子,只是一個原子。它包含六個電子。它是一種非常有趣的原子,在技術(shù)上非常重要。在我們的生活中,我們的生活是由碳構(gòu)成的。碳分子是有機化學(xué)的基礎(chǔ)。沒有經(jīng)典計算機,也沒有已知的量子計算機能像碳原子那樣快地計算碳是如何與光相互作用的。我們無法計算。但碳原子能告訴我們,如果加熱一個碳原子,會放出什么顏色的光。因此,這里傳達的信息是,盡管有量子霸權(quán)這個詞,但我認為技術(shù)是在演化的,而不是革命。我們會發(fā)現(xiàn)量子計算機將對越來越多的任務(wù)有用,但不會突然接管整個世界。
我要提到的第三種方法我特別喜歡,它特別有趣,物理學(xué)上稱之為編織。用扭結(jié)來計算的歷史可以追溯到南美洲的古印第安人。他們用扭結(jié)的數(shù)量和種類來表示數(shù)字。你可以用繩子來表示數(shù)字,互相發(fā)送信息,并用這些繩子進行計算。很明顯,當(dāng)你把物體纏繞在一起時,扭結(jié)會變得非常非常復(fù)雜。任何試圖編精美發(fā)辮,甚至任何淋浴后想整理頭發(fā)的人,都了解描述和控制纏繞的發(fā)辮有多么復(fù)雜。所以你可以在里面編碼很多信息。如果你有合適的物理實體,電路,或者更高級的設(shè)備來掌控其纏繞方式,它們被稱作任意子,然后你便可以用任意子來存儲和處理信息。它們在其量子力學(xué)波函數(shù)中記錄它們的歷史。我的朋友和同事潘建偉在人工實現(xiàn)任意子的小規(guī)模電路上做出一些開創(chuàng)性實驗。
任意子的量子模擬
正如我所說,通用量子計算機可能還有很長的路要走。然而,可為我們所用的量子單元可能會更快地到來。在經(jīng)典計算機領(lǐng)域,人們設(shè)計圖形處理器 GPU 來執(zhí)行電腦游戲中的特殊操作,從而能夠非常快地處理涉及屏幕上所有像素的許多簡單計算。通用計算機要處理很多不同種類的任務(wù),因為它們必須是通用的,所以它們對單一任務(wù)的處理速度要慢得多。
量子處理器、量子計算機,即使很小,但對于某些測試,得益于量子比特的能力,仍然能做得很好。所以,可以有一種混合設(shè)計,即一臺經(jīng)典計算機,它可以處理很多事務(wù) —— 很多經(jīng)典計算機已經(jīng)擅長的事情,
但是偶爾也需要一臺量子處理器來完成特殊任務(wù)。我想這種應(yīng)用方式很快就會出現(xiàn)。在現(xiàn)場的 Peter Zoller 就率先做出了這方面的努力。對于年輕人來說,在物理工程領(lǐng)域有著巨大的創(chuàng)造力和創(chuàng)新空間。這些量子模擬器,你可以認為就是現(xiàn)代的、量子版本的風(fēng)洞。在飛機設(shè)計的早期,某種程度上今天人們?nèi)匀粫ㄟ^風(fēng)洞來模擬、測試可能的設(shè)計,而不是建造一架全尺寸的飛機。同樣,我們可以在量子模擬器上模擬制造分子的條件,而不需要去化學(xué)實驗室制造真正的分子。
另一種可能更容易理解和記憶的說法是,我們期望量子模擬器,小的量子比特集合,能夠非常擅長于量子力學(xué)。盡管經(jīng)典計算機很難精確地完成量子力學(xué),因為量子比特變得非常復(fù)雜、非常快。如果為了制造新材料或新分子,你想計算許多相互作用的量子單元的性質(zhì),那么從量子比特這個方向?qū)ふ曳桨福蚜孔颖忍禺?dāng)作計算單元可能會極其有幫助。已經(jīng)有一些與量子模擬器使用相關(guān)的具體想法,這要比試圖制造一臺全能的圖靈機容易得多。
至此,我們已經(jīng)討論了作為奇特新腦的數(shù)字計算機和量子計算機。量子計算機是用物理概念(與人類大腦很不同)來體現(xiàn)信息和思想的奇特新方法。我想再討論一個領(lǐng)域,近年來這一領(lǐng)域取得的成功令人印象深刻,其更接近于人類大腦的工作方式,但是卻是人工的和工程的。它被稱為神經(jīng)網(wǎng)絡(luò)。
到目前為止,我討論過的計算機,以及各種奇怪的“腦”,在設(shè)計和概念上與人類思維有很大不同。它們處理的符號、抽象和物理元素與人類大腦的工作方式完全不同。生物學(xué)的運作方式是不同的,它使用的單元速度慢得多,但各單元之間的連通性比人工機器、電子計算機或任何現(xiàn)有量子計算機設(shè)計中的連通性要高得多。它有分層的體系結(jié)構(gòu)和巨大的并行性,這與你在計算機芯片中發(fā)現(xiàn)的完全不同。
小腦架構(gòu)
這是人類視網(wǎng)膜的示意圖,是我們最好用的圖像處理器,在許多方面的表現(xiàn),比任何計算機都要優(yōu)秀。這是人類小腦的示意圖。這部分是專門用來同步我們的肌肉,保持我們運動平衡的。同樣,它也有這種分層結(jié)構(gòu)。沒人知道它的詳細工作原理,但是它非常強大,非常擅長它的工作。沒有一個人類設(shè)計的機器人可以像人類一樣自如地移動。
所以,盡管這些單元很小、很慢,不像人工計算機部件那樣制作精密、那樣可靠,但它運作起來非常流暢,這就是人類特有的優(yōu)勢?;谶@種觀察和經(jīng)歷,人類得到啟發(fā),這種非同尋常的架構(gòu)可以很好地實現(xiàn)思維,構(gòu)建第三種奇特新“腦”。這里的基本構(gòu)件不是一個單元,不是經(jīng)典計算中的 1 或 0,也不是它的量子推廣(如量子計算中的),而是所謂的神經(jīng)元。
這是一個神經(jīng)元模型。你所要做的是進行輸入,輸入的是數(shù)字和權(quán)重,權(quán)重也是數(shù)字。然后,你對基于數(shù)字和權(quán)重的輸入進行相乘或者其他處理,然后將其導(dǎo)入你的神經(jīng)元,神經(jīng)元根據(jù)輸入值產(chǎn)生輸出,如此循環(huán)。你可以用一種神經(jīng)元的輸出作為下一層神經(jīng)元的輸入。這是一個簡單的理想化模型,以進入神經(jīng)元并產(chǎn)生輸出信號的電信號來描述實際的生物神經(jīng)元是如何工作的。其優(yōu)點是我們可以用程序進行設(shè)計和操作。
這個領(lǐng)域的偉大發(fā)現(xiàn)經(jīng)歷了幾個階段,但如今已經(jīng)發(fā)展成一個非常精細和強大的實踐理論,那就是可以自主學(xué)習(xí)的簡單神經(jīng)元的網(wǎng)絡(luò)。它們可以通過改變權(quán)重來學(xué)習(xí),這樣它們的表現(xiàn)就會越來越好。這一基本原理是這樣的:假設(shè)你的神經(jīng)網(wǎng)絡(luò)通過觀察大量的圖像來獲取輸入,并對它們所看到的進行編碼,然后將信息發(fā)送給另一層神經(jīng)元,然后將它們的輸出傳播到再一層的神經(jīng)元,然后再傳遞到輸出端,這可以解釋為一條信息,告訴你原始圖像中編碼的信息是什么。例如,你可能有一個神經(jīng)元,如果原始圖像包含貓、人或某一類人臉,它就會發(fā)光?,F(xiàn)在假設(shè)你的圖像包含一只貓,但是你的輸出中沒有貓或者只有其他事物。這就是一個錯誤,那么如何做得更好?神經(jīng)元知道產(chǎn)生了錯誤的答案,就像一個老師告訴它答案是對還是錯。如果有一個錯誤,這個神經(jīng)元會告訴大腦,告訴它的前一層神經(jīng),它犯了一個錯誤,進而改變它的權(quán)重,這樣就會更正錯誤。神經(jīng)元說,好,我稍微改變一下,這樣我會給你一個更好的答案。然后,如果這個單元也錯了,它責(zé)怪上面的那層單元,告訴它:你犯了一個錯誤。這層單元會說:哦,我犯了一個錯誤,所以如果我有不同的權(quán)重,我可以做得更好;我會稍微改變一下權(quán)重。如此反復(fù)進行。
這是一個非常非常簡單的想法,叫作反向傳播。這是一種系統(tǒng)地從錯誤中學(xué)習(xí)以提高權(quán)重的方法,這樣它們會給出越來越多的正確答案和越來越少的錯誤答案。這已經(jīng)實現(xiàn)了,被稱為深度學(xué)習(xí)。這帶來的成功可以說令人印象深刻。深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)已經(jīng)非常擅長在圖像、人臉或貓領(lǐng)域進行識別,而且還精通曾經(jīng)被認為是人類智力頂峰的事情,比如:國際象棋,圍棋,高等級的星際爭霸游戲。
舉一個象棋的例子,它令我印象深刻,可能是因為我對象棋的了解比對圍棋或星際爭霸要多一些。象棋已被人類深入研究了幾個世紀(jì),關(guān)于它的文字資料非常豐富。有的人類棋手終其一生都在精進棋藝,并且認為對象棋的理解已經(jīng)相當(dāng)透徹了。將國際象棋的規(guī)則輸入神經(jīng)網(wǎng)絡(luò),通過與自己對局,在幾天內(nèi),甚至幾個小時內(nèi),通過使用深度學(xué)習(xí)策略,神經(jīng)網(wǎng)絡(luò)的棋藝就可以趕超任何人類玩家,同樣也比人類通過編程而設(shè)計出的經(jīng)典計算機棋手要好得多。這難免令人類汗顏,我們創(chuàng)造的事物竟可以在某些方面完成我們認為是智力頂峰的任務(wù),并且做得更好。如果你認為棋類等游戲不是很重要,神經(jīng)網(wǎng)絡(luò)在其他一些問題上比任何程序或人類也表現(xiàn)得更好,比如確定一個 DNA 密碼的化學(xué)結(jié)構(gòu)和它的形成機理及形狀。
我重點介紹了這些應(yīng)用反向傳播學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),但是它們還不是最有能力的。我們的大腦更為復(fù)雜,其出色的秘密就在于對反饋的審視。它包含的不僅僅是單向的信息流,還有對返回信息的再處理。是的,大腦網(wǎng)絡(luò)在審視自己的行為。簡單地說,就是大腦在思考我們在做什么。
傳播網(wǎng)絡(luò)并不思考它們在做什么,它們只管傳播。它們不反省,也不檢查自己的表現(xiàn)。因此,接下來是思考的下一個層次,我們需要超越反向傳播,研究審視和指導(dǎo)其他網(wǎng)絡(luò)的網(wǎng)絡(luò)。審視自身行為,很有可能除了監(jiān)控外部世界和身體狀態(tài)的傳感器之外,我們還有監(jiān)控、預(yù)測、評估和指導(dǎo)我們內(nèi)部大腦狀態(tài)的模塊,這些模塊觀察我們在想什么。換句話說,就是在觀察和審視我們的意識。
我們思考我們正在思考什么。這可能與意識密切相關(guān),本質(zhì)上也可能就是意識。事實上,有一個叫 Benjamin Libet 的人在 20 世紀(jì) 70 年代開創(chuàng)了一個很經(jīng)典的實驗。我相信,隨后也得到了許多其他復(fù)雜的實驗驗證,這些實驗指出了這樣一種觀點,即我們所說的意識不是在決定要做的事情,而是在觀察我們大腦中正在發(fā)生的事情,并對其進行報告。
我向大家展示這個經(jīng)典的實驗,它改變了我對自己在這個世界上的看法。這是一個極其簡單的實驗。
這是它的卡通版示意圖。實驗人員安排給受試者一個非常簡單的任務(wù)。受試者被要求做兩件事,即每隔一段時間,每當(dāng)他或她想按按鈕時,也看一下時鐘,記錄下是何時決定按下按鈕的。所以當(dāng)受試者決定按下按鈕時,他會報告做出決定的時間。這就是這個實驗的過程。實驗的第三個組成部分是受試者處于一個監(jiān)控大腦活動的電子設(shè)備中。實驗發(fā)現(xiàn),當(dāng)受試者報告說他們做出了決定,這個時間要比大腦活動晚 0.2 秒左右,而大腦活動是導(dǎo)致按下按鈕的原因。大腦的深層結(jié)構(gòu)先于對行為意愿的意識。正如我所說,現(xiàn)在有許多這類實驗,有許多先進的現(xiàn)代技術(shù),都驗證了這一結(jié)果。簡單地說,如果此類實驗結(jié)論是正確的,人工神經(jīng)網(wǎng)絡(luò)的一大進步將會是對“意識”的引入。
就物質(zhì)方面而言,我們也應(yīng)該借鑒生物學(xué)理論。我們應(yīng)該引入自我復(fù)制理論。我們大腦的成長來自細胞的成長,細胞通過自我繁殖和自我配置,一倍又一倍的增長。人類大腦的形成過程很特殊,而且成本也低得多;當(dāng)然比人工大腦的制造方式更有趣,因為它是由進化產(chǎn)生的,而人工大腦可以更快、更大規(guī)模地人工制造。這是就是未來的物理工程。這是一個關(guān)于自我復(fù)制的粗略想法。偉大的數(shù)學(xué)家約翰?馮?諾依曼,順便說一句,他開創(chuàng)了作為所有現(xiàn)代計算機基礎(chǔ)的被稱為諾依曼架構(gòu)的理論,他寫了一本書,概述了如何制造一個自我復(fù)制的機器和生物體。
總結(jié)一下今天的內(nèi)容,也展望一下未來。我認為即將出現(xiàn)幾種奇特而強大的新“大腦”。這為想要改變世界的年輕人敞開了大門。這些領(lǐng)域為研究者提供了很大的創(chuàng)造空間。物理學(xué)和物理學(xué)家都有很多可以發(fā)揮才能的領(lǐng)域。
謝謝大家。
廣告聲明:文內(nèi)含有的對外跳轉(zhuǎn)鏈接(包括不限于超鏈接、二維碼、口令等形式),用于傳遞更多信息,節(jié)省甄選時間,結(jié)果僅供參考,IT之家所有文章均包含本聲明。