設(shè)置
  • 日夜間
    隨系統(tǒng)
    淺色
    深色
  • 主題色

谷歌氣球的人工智能為何令開發(fā)者自己感到驚奇

2021/3/5 9:10:51 來源:新浪科技 作者:任天 責(zé)編:懶貓

北京時間 3 月 5 日消息,使用人工智能的算法正在嘗試以意想不到的技巧來解決問題,這讓它們的開發(fā)者感到驚訝。但與此同時,這也引發(fā)了人們對如何控制人工智能的擔(dān)憂。

谷歌公司的一群員工正茫然地盯著自己的電腦屏幕。幾個月來,他們一直在完善一個算法,用來控制一個無人熱氣球從波多黎各一直飛到秘魯。但還是有些地方不盡如人意,氣球在機器智能的控制下不斷偏離既定路線。

Loon 項目(Project Loon)是谷歌公司現(xiàn)已停止的一個項目,旨在通過氣球?qū)⒒ヂ?lián)網(wǎng)接入偏遠地區(qū)。作為該項目的負責(zé)人,塞爾瓦托 · 坎迪多無法解釋這個氣球的軌跡。最后,他的同事們手動控制了系統(tǒng),讓氣球回到了正軌。

后來他們才意識到發(fā)生了什么。令人意想不到的是,氣球上的人工智能學(xué)會了重現(xiàn)人類在幾百年,甚至幾千年前發(fā)明的古老航海技術(shù),例如 “改變航向”,這指的是操縱船只迎風(fēng)航行,然后再向外傾斜,從而在大致方向上以之字形前進。

在不利的天氣條件下,自主飛行的氣球已經(jīng)學(xué)會了完全靠自己來改變航向。它們自發(fā)地完成了這一過程,讓所有人都感到震驚,尤其是參與這個項目的研究人員。

▲ 在 Loon 項目中控制氣球飛行的人工智能學(xué)會了一種迎風(fēng)航行的技術(shù)

“當(dāng)?shù)谝粋€被允許完全執(zhí)行這種技術(shù)的氣球創(chuàng)造了從波多黎各到秘魯?shù)娘w行時間記錄時,我們馬上意識到自己被打敗了,”坎迪多在一篇關(guān)于該項目的博客文章中寫道,“我從來沒有像這樣,同時感到自己既聰明又愚蠢。”

富有創(chuàng)造力的人工智能

當(dāng)人工智能在設(shè)備中被放任自流時,很可能就會發(fā)生這樣的事情。與傳統(tǒng)的計算機程序不同,人工智能的設(shè)計目的就是探索和開發(fā)新的方法,以完成人類工程師沒有明確告訴它們的任務(wù)。

然而,在學(xué)習(xí)如何完成這些任務(wù)的同時,人工智能有時會想出一種極富創(chuàng)造力的方法,甚至?xí)屢恢笔褂眠@種系統(tǒng)的人大吃一驚。這可能是一件好事,但同時也可能使人工智能控制的一切變得不可預(yù)測,甚至可能帶來危險。例如,機器人和自動駕駛汽車最終可能做出將人類置于危險境地的決定。

人工智能系統(tǒng)怎么可能 “智勝”它的人類主人呢?我們能否以某種方式約束機器智能,以確保不致某些不可預(yù)見的災(zāi)難?

▲ 隨著人工智能開始應(yīng)用于現(xiàn)實世界,了解它們是否會做一些意想不到的事情是很重要的

在人工智能研究界,有一個關(guān)于人工智能創(chuàng)造力的例子似乎被引用得最多。佐治亞理工學(xué)院的馬克 ? 里德爾表示,真正讓人們對人工智能的能力感到興奮的時刻,是 DeepMind 的人工智能機器學(xué)習(xí)系統(tǒng) AlphaGo 如何掌握圍棋這一古老的游戲,然后擊敗了世界上最優(yōu)秀的人類棋手之一。DeepMind 是一家創(chuàng)立于 2010 年的人工智能公司,在 2014 年被谷歌收購。

里德爾解釋道:“事實證明,它們可以用一些以往從未有人用過——或者至少很多人不知道——的新策略或新技巧,來對付人類棋手?!?/p>

然而,即使是這樣一場單純的圍棋游戲,也會引起人們不同的感受。一方面,DeepMind 自豪地描述了其系統(tǒng) AlphaGo 的 “創(chuàng)新”之處,并揭示了圍棋,這一人類已經(jīng)玩了數(shù)千年的游戲的新玩法。另一方面,一些人質(zhì)疑如此有創(chuàng)造性的人工智能有朝一日是否會對人類構(gòu)成嚴(yán)重威脅。

在 AlphaGo 取得歷史性勝利后,澳大利亞西悉尼大學(xué)的機器學(xué)習(xí)、電子學(xué)和神經(jīng)科學(xué)研究者喬納森 ? 塔普森寫道:“認為我們能夠預(yù)測或管理人工智能最壞的行為是很可笑的,我們實際上無法想象它們可能的行為?!?/p>

里德爾表示,我們需要記住的重要一點是,人工智能并不真正像人類那樣思考。它們的神經(jīng)網(wǎng)絡(luò)確實是受到了動物大腦的啟發(fā),但更確切地說,它們是所謂的 “探索設(shè)備”。當(dāng)它們試圖解決一個任務(wù)或問題時,并不會帶有很多(如果有的話)對更廣闊世界的先入之見。它們只是嘗試——有時是數(shù)百萬次——去找到一個解決方案。

“我們?nèi)祟愑泻芏嗨枷肷系陌?,我們會考慮規(guī)則,”里德爾說,“人工智能系統(tǒng)甚至不理解規(guī)則,因此它們可以隨意地撥弄事物?!?/p>

里德爾補充道,在這種情況下,人工智能可以被描述為具有 “學(xué)者癥候群”的硅等量物。所謂學(xué)者癥候群,通常是指一個人有嚴(yán)重的精神障礙,但卻在某種藝術(shù)或?qū)W術(shù)上擁有非凡的能力,其天賦通常與記憶有關(guān)。

不斷帶給我們驚奇

人工智能讓我們感到驚奇的方式之一,是它們能夠使用相同的基本系統(tǒng)來解決根本不同的問題。最近,一款機器學(xué)習(xí)工具就被要求執(zhí)行一項非常不同的功能:下國際象棋。

該系統(tǒng)被稱為 “GPT-2”,由非營利的人工智能研究組織 OpenAI 開發(fā)。GPT-2 利用數(shù)以百萬計的在線新聞文章和網(wǎng)頁信息進行訓(xùn)練,可以根據(jù)句子中前面的單詞預(yù)測下一個單詞。開發(fā)者肖恩 · 普萊瑟認為,國際象棋的走法可以用字母和數(shù)字的組合來表示,因此如果根據(jù)國際象棋比賽的記錄來訓(xùn)練算法,這一工具就可以通過計算理想的走法序列來學(xué)習(xí)如何下棋。

普萊瑟對 GPT-2 系統(tǒng)進行了 240 萬場國際象棋比賽的訓(xùn)練?!翱吹较笃逡孀兂涩F(xiàn)實真是太酷了,”他說,“我當(dāng)時根本不確定這能不能行得通?!钡?GPT-2 做到了。盡管它的水平還比不上專門設(shè)計的國際象棋計算機,但已經(jīng)能夠成功地完成艱苦的比賽。

普萊瑟表示,他的實驗表明 GPT-2 系統(tǒng)具有許多尚待探索的能力,堪稱一個具有國際象棋天賦的專家。該軟件后來的一個版本讓網(wǎng)頁設(shè)計人員大為震驚,當(dāng)時,一位開發(fā)人員對其進行了簡單的訓(xùn)練,讓它寫出用于在網(wǎng)頁上顯示項目(如文本和按鈕)的代碼。盡管只有一些簡單的描述,如 “表示‘我愛你’的紅色文本和帶有‘ok’的按鈕”,但這個人工智能依然生成了適當(dāng)?shù)拇a。很顯然,它已經(jīng)掌握了網(wǎng)頁設(shè)計的基本要領(lǐng),但所受的訓(xùn)練卻少得驚人。

長期以來,人工智能給人們留下的深刻印象主要來自電子游戲領(lǐng)域。在人工智能研究界,有無數(shù)例子揭示了算法在虛擬環(huán)境中所做到的事情有多么令人驚訝。研究者經(jīng)常在諸如電子游戲等空間中對算法進行測試和磨練,以了解它們到底有多強大。

2019 年,OpenAI 因為一段視頻登上了新聞頭條。視頻中,一個由機器學(xué)習(xí)控制的角色正在玩捉迷藏游戲。令研究人員驚訝的是,游戲中的 “尋找者”最終發(fā)現(xiàn),它們可以跳到物品上方進行 “沖浪”,從而進入 “躲藏者”所在的圍欄。換言之,“尋找者”學(xué)會了為了自己的利益而改變游戲規(guī)則。

反復(fù)試錯的策略會帶來各種有趣的行為,但并不總能帶來成功。兩年前,DeepMind 的研究員維多利亞 · 克拉科夫娜邀請她博客的讀者分享人工智能解決棘手問題的故事,但要求解決問題的方式是不可預(yù)測或不可接受的。

她整理出了一長串很吸引人的例子。其中有一個游戲算法,在第 1 關(guān)結(jié)束時學(xué)會了自殺,以避免在第 2 關(guān)死亡,這就實現(xiàn)了在第 2 個關(guān)卡中不死的目標(biāo),只不過采用了一種特別令人印象深刻的方式。另一個算法發(fā)現(xiàn),它可以在游戲中跳下懸崖,并將對手帶向毀滅;通過這種方式,人工智能得到了足夠的點數(shù)以獲得額外的生命,從而在無限循環(huán)中不斷重復(fù)這種自殺策略。

紐約大學(xué)坦登工程學(xué)院的電子游戲人工智能研究者朱利安 · 托格里烏斯試圖解釋這其中發(fā)生的一切。他表示,這些都是 “獎勵分配”錯誤的典型例子。當(dāng)人工智能被要求完成某件事時,它可能會找到一些奇怪的、出乎意料的方法來實現(xiàn)目標(biāo),并最終證明這些方法是正確的。人類很少采取這樣的策略,指導(dǎo)我們?nèi)绾斡螒虻姆椒ê鸵?guī)則十分重要。

托格里烏斯及其同事發(fā)現(xiàn),當(dāng)人工智能系統(tǒng)在特殊條件下接受測試時,這種目標(biāo)導(dǎo)向的偏見會暴露出來。在最近的實驗中,他的團隊發(fā)現(xiàn),被要求在銀行進行投資的游戲人工智能角色會跑到虛擬銀行大廳附近的一個角落,等待獲得投資回報。托格里烏斯指出,這個算法已經(jīng)學(xué)會了將跑到拐角處與獲得金錢回報聯(lián)系起來,盡管這種運動與得到多少回報之間并沒有實際的關(guān)系。

托格里烏斯表示,這有點像人工智能在發(fā)展迷信,在得到了某種獎勵或懲罰之后,它們開始思考為什么會得到這些。

這是 “強化學(xué)習(xí)”的陷阱之一。所謂 “強化學(xué)習(xí)”,是指人工智能最終會根據(jù)它在環(huán)境中遇到的情況設(shè)計出判斷錯誤的策略。人工智能不知道自己為什么會成功,它只能將自己的行動建立習(xí)得聯(lián)想的基礎(chǔ)上。這有點像人類文化早期階段時,將祈禱儀式與天氣變化聯(lián)系起來的行為。

▲ 鴿子可以學(xué)會將食物與某些行為聯(lián)系起來,而人工智能會表現(xiàn)出類似的耦聯(lián)行為

一個有趣的例子是,鴿子也會出現(xiàn)這樣的行為。1948 年,一位美國心理學(xué)家發(fā)表了一篇論文,描述了一個不尋常的實驗:他將鴿子放在圍欄里,間歇性地給予食物獎勵。這些鴿子開始將食物與它們當(dāng)時正在做的事情聯(lián)系起來,有時是拍打翅膀,有時是舞蹈般的動作。然后,它們會重復(fù)這些行為,似乎期待著獎勵會隨之而來。

用新辦法解決老問題

托格里烏斯所測試的游戲人工智能與心理學(xué)家所使用的活體動物之間有著巨大的差異,但托格里烏斯暗示,其中起作用的似乎是相同的基本機制,即獎勵與特定行為錯誤地聯(lián)系在一起。

人工智能研究者可能會對機器學(xué)習(xí)系統(tǒng)所選擇的路徑感到驚訝,但這并不意味著他們對機器學(xué)習(xí)系統(tǒng)感到敬畏。DeepMind 的深度學(xué)習(xí)研究科學(xué)家拉亞 ? 哈德賽爾表示:“我從不覺得這些人工智能有自己的想法?!?/p>

哈德賽爾對許多人工智能系統(tǒng)進行了試驗,發(fā)現(xiàn)它們能對她或她同事未曾預(yù)料的問題提出有趣和新穎的解決方案。她指出,這正是研究人員應(yīng)該致力于增強人工智能的原因,因為這樣,它們就可以完成人類自己無法完成的事情。

哈德賽爾還認為,使用人工智能的產(chǎn)品,比如自動駕駛汽車,可以經(jīng)過嚴(yán)格測試,以確保任何不可預(yù)測性都在一定的可接受范圍內(nèi)?!澳憧梢詫诮?jīng)驗證據(jù)的行為做出合理的保證,”她說道。

在這一點上,只有時間才能證明所有銷售人工智能產(chǎn)品的公司是否都如此小心謹(jǐn)慎。但與此同時,值得注意的是,人工智能表現(xiàn)出的意外行為絕不僅僅局限于研究環(huán)境,而是已經(jīng)進入了商業(yè)產(chǎn)品領(lǐng)域。

2020 年,在德國柏林的一家工廠里,由美國強化學(xué)習(xí)機器人技術(shù)公司 Covariant 開發(fā)的一款機器人手臂在物品經(jīng)過傳送帶時,展現(xiàn)出了意想不到的分類方法。盡管沒有專門的程序,但控制手臂的人工智能學(xué)會了瞄準(zhǔn)透明包裝的物品中心,以確保其每次都能成功地將物品抓起來。由于這些物品是透明的,在重疊時可能會混在一起,因此瞄準(zhǔn)不精確意味著機器人可能無法抓起物品。

Covariant 的聯(lián)合創(chuàng)始人兼首席執(zhí)行官陳曦(Peter Chen)說:“它避免了物體的重疊角,而是瞄準(zhǔn)了最容易拾取的表面。這真的讓我們很吃驚。”

無獨有偶,哈德賽爾的團隊最近試驗了一款機器人手臂,可以通過形狀分類孔洞來選取不同的物品。一開始機器人的手臂很笨拙,在人工智能的控制下,它通過不斷地拿起和放下物品進行學(xué)習(xí);最終,機器人可以在物品進入正確位置時將其抓住,并將物品很容易地放入適當(dāng)?shù)目锥?,而不是試圖用鉗子擺弄它。

所有這些都印證了 OpenAI 研究管理者杰夫 · 克倫的觀點,即人工智能的探索性是其未來成功的基礎(chǔ)。近年來,克倫一直在與世界各地的同行合作,收集人工智能以出人意料的方式開發(fā)出問題解決方案的例子。

克倫說:“隨著我們不斷擴展這些人工智能系統(tǒng)的規(guī)模,可以看到,它們正在做著一些富有創(chuàng)造性且令人印象深刻的事情,而不只是表現(xiàn)出學(xué)術(shù)上的好奇心?!?/p>

如果人工智能系統(tǒng)能找到更好的方法來診斷疾病,或者向有需要的人群運送緊急物資,它們就可以挽救更多的生命??藗愌a充道,人工智能有能力找到解決老問題的新方法。但他也認為,開發(fā)這類系統(tǒng)的人需要對其不可預(yù)測的本質(zhì)保持開放和誠實,以幫助公眾了解人工智能的工作機制。

畢竟,這是一把雙刃劍。人工智能的承諾和威脅一直同時存在,它們接下來會想到什么?這是耐人尋味的問題。

廣告聲明:文內(nèi)含有的對外跳轉(zhuǎn)鏈接(包括不限于超鏈接、二維碼、口令等形式),用于傳遞更多信息,節(jié)省甄選時間,結(jié)果僅供參考,IT之家所有文章均包含本聲明。

相關(guān)文章

關(guān)鍵詞:人工智能,谷歌

軟媒旗下網(wǎng)站: IT之家 最會買 - 返利返現(xiàn)優(yōu)惠券 iPhone之家 Win7之家 Win10之家 Win11之家

軟媒旗下軟件: 軟媒手機APP應(yīng)用 魔方 最會買 要知